Acta Crystallographica Section E

Structure Reports

Online

4-\{[(2-Hydroxy-1-naphthyl)methylidene]amino\}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

ISSN 1600-5368

Zhong-Lu You, ${ }^{\text {a }}{ }^{*}$ Jia Wang ${ }^{\text {a }}$ and Jing-Yun Chi ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ${ }^{\text {b }}$ Office of Scientific Research, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail:
youzhonglu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.069$
$w R$ factor $=0.180$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, is a Schiff base compound derived from 4-aminoantipyrine and 2-hydroxy-1-naphthaldehyde. As expected, the two crystallographically independent molecules adopt trans configurations about the central $\mathrm{C}=\mathrm{N}$ bonds.

Comment

Antipyrine and its derivatives exhibit a wide range of biological activities and applications (Yadav et al., 2003; Ismail, 2000; Abd El Rehim et al., 2001). The structures of antipyrine derivatives have also been investigated (Li \& Zhang, 2004, 2005; Zhang \& Li, 2005; Liang et al., 2002; You et al., 2003, 2004). As an extension of such work on the structural characterization of antipyrine derivatives, a new compound, (I), is reported here.

The asymmetric unit of (I) consists of two independent molecules (Fig. 1). In both of these, the bond lengths and angles are in normal ranges, close to those observed in similar antipyrine Schiff bases cited above. The dihedral angle between the N2/N3/C12/C13/C16 pyrazoline ring and the C17C 22 benzene ring is $64.6(3)^{\circ}$ and that between the $\mathrm{N} 5 / \mathrm{N} 6 / \mathrm{C} 34 /$ C35/C38 pyrazoline ring and the C39-C44 benzene ring is $65.4(3)^{\circ}$. Atom O 2 deviates from the pyrazoline mean plane by 0.166 (4) Å, whereas atoms C14 and C15 deviate from it, on the other side, by 0.123 (5) and 0.456 (5) \AA, respectively. Atom O4 deviates from the other pyrazoline mean plane by 0.091 (4) \AA, whereas atoms C36 and C37 deviate from it, on the opposite side, by 0.123 (5) and 0.419 (5) \AA, respectively. As a result of conjugation through the imino double bonds, the pyrazoline and the naphthyl ring systems in both molecules are nearly coplanar; the dihedral angle between the $\mathrm{N} 2 / \mathrm{N} 3 /$ $\mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 16$ pyrazoline ring and the $\mathrm{C} 1-\mathrm{C} 10$ naphthyl ring system is $9.4(4)^{\circ}$ [mean deviation from the combined mean plane is 0.074 (5) \AA] and that between the $\mathrm{N} 5 / \mathrm{N} 6 / \mathrm{C} 34 / \mathrm{C} 35 /$ C38 pyrazoline ring and the C23-C32 naphthyl ring system is $8.4(4)^{\circ}$ [mean deviation from the combined mean plane is $0.068(5) \AA$. As expected, the two molecules adopt trans configurations about the $\mathrm{C} 11=\mathrm{N} 1$ and $\mathrm{C} 33=\mathrm{N} 4$ bonds. There are no short contacts among the molecules.

Received 3 March 2006
Accepted 27 March 2006

Experimental

A mixture of 2-hydroxy-1-naphthaldehyde ($0.1 \mathrm{mmol}, 172.2 \mathrm{mg}$) and 4-aminoantipyrine ($0.1 \mathrm{mmol}, 20.3 \mathrm{mg}$) was dissolved in MeOH $(20 \mathrm{ml})$. The mixture was stirred for about 10 min at room temperature to give a clear yellow solution. After allowing the solution to stand in air for 7 d , yellow block-shaped crystals were formed. Analysis found: C 73.72, H 5.50, $\mathrm{N} 11.83 \%$; calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 73.93, H 5.36, N 11.76\%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=357.40$
Orthorhombic, Pna2
$a=11.713(1) \AA$
$b=14.951(1) \AA$
$c=21.877(2) \AA$
$V=3831.1(5) \AA^{3}$
$Z=8$
$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.992$
29274 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.180$
$S=1.01$
7941 reflections
492 parameters

Mo $K \alpha$ radiation
Cell parameters from 2824 reflections
$\theta=2.3-24.9^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.30 \times 0.17 \times 0.10 \mathrm{~mm}$

7941 independent reflections
4828 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-18 \rightarrow 18$
$l=-27 \rightarrow 27$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0909 P)^{2}\right]$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.32$ e \AA^{-3}
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{N} 4$	0.82	1.82	$2.541(4)$	147
O1-H1 $\cdots \mathrm{N} 1$	0.82	1.80	$2.523(4)$	146

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA, \mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2$

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines indicate hydrogen bonds.
or $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$. The structure contains solvent-accessible voids of $55 \AA^{3}$, which might accommodate a disordered water molecule. In the absence of significant anomalous scattering effects, 3860 Friedel pairs were merged before the final refinement.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Scientific Research Foundation of the Education Office of Liaoning Province (project No. 2005226).

References

Abd El Rehim, S. S., Ibrahim, M. A. M. \& Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Ismail, K. Z. (2000). Transition Met. Chem. 25, 522-528.
Liang, H., Yu, Q. \& Hu, R.-X. (2002). Transition Met. Chem. 27, 454-457.
Li, Z.-X. \& Zhang, X.-L. (2004). Acta Cryst. E60, o2199-o2200.
Li, Z.-X. \& Zhang, X.-L. (2005). Acta Cryst. E61, o375-o377.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Yadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. \& West, D. X. (2003). Inorg. Chim. Acta, 349, 30-36.

You, Z.-L., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. E60, o801-o803.
You, Z.-L., Zhu, H.-L., Liu, W.-S. \& Tan, M.-Y. (2003). Acta Cryst. E59, o1920o1922.
Zhang, X.-L. \& Li, Z.-X. (2005). Acta Cryst. E61, o266-o268.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

